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Abstract 

Oscillators are affected by drifts (linear phase drift, linear frequency drift, i.e. quadratic phase 
drift) and different types of noise according to the power law model of power spectral density 
(from /~2 to f+i frequency noise, i.e. /~4 to f° phase noise). Generally, for long-term instability 
characterization (duration greater than one hour), drift coefficients are estimated by using least 
squares whereas noise levels are obtained from the residuals by using variances (AVAR, MVAR, 
TVAR, ...)• 

However, the low frequency noises, such as random walk FM, induce very long term fluctua- 
tions which may be confused with deterministic drifts. This effect, due to the non-stationarity of 
these noises, depends on the low cut-off frequency which must be introduced in order to ensure 
power convergence for low frequencies. We calculate the standard deviation of " artificial" drifts 
due to long-term random fluctuations, versus the noise levels. 

The first interest of these results concerns the estimation of the measurement uncertainty of 
drift coefficients : knowing the noise levels of an oscillator we calculate the standard deviation 
of the artificial drift coefficient due to these noises; thus, if a "real" deterministic drift is iden- 
tified in the signal, its coefficients are determined plus or minus the artificial drift coefficients. 
The standard deviation of the artificial drift coefficients may be considered as the measurement 
uncertainty of the deterministic drift coefficient. 

The second interest concerns the predictability of an oscillator affected by a deterministic 
drift. Thus, the knowledge of the drift coefficient uncertainties yields a criterion for quantifying 
the reliability of a time error prediction. 

1    INTRODUCTION 

We consider a sequence of frequency deviation samples composed of a deterministic part, i.e.   a 
linear frequency drift, and a random part: 

y(tk) = C1tk + C0 + ek. (1) 

An estimation by least squares yields estimates C0 and C\ of the real coefficients CQ and Ci- 
Denoting the interpolated samples by y(t), we obtain: 

y{tk) = Citk + Co. (2) 

The residuals are defined as: 

Cjt = y(tfc) ~ y(tjfc) (3) 
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1.1 Random Fluctuations and Deterministic Drifts 

The instantaneous frequency is defined from the nominal frequency and the frequency deviation 
samples by: 

"k = "o (1 + yjfe) (4) 

If the sequence y^ is not centered, there are two possibilities: 

• the real nominal frequency is different from the assumed nominal frequency: this is a problem 
of inaccuracy of the oscillator; 

• there are long-term random fluctuations (with period much longer than the duration of the 
sequence) which are seen as constant over the sequence[l]. 

The same problem may occur with linear frequency drift. 
It is impossible to distinguish a "true" deterministic drift from a "false" random drift. 

1.2 Statement of the Problem 

The Power Spectral Density (PSD) may be modelled as: 

Sy{f)   =      J2     k«-fa (5) 
a=-2 

• If no deterministic drift exists, what are the relationships between the noise levels ha and the 
estimated drift coefficients Cb and Ci? 

• If a deterministic drift exists, what are the uncertainties of the estimated drift coefficients C0 

and Ci? 

• In both cases, what is the Time Interval Error (TIE) due to an extrapolation of the linear 
frequency drift? 

2    LINEAR REGRESSION 

2.1    Coefficient Calculation 

We consider N measurements (U, yi): {(t0, yo),---, (i;v_i, yjv-i)}, regularly spaced with a sampling 
period To: 

tk = t0 + k.T0 (6) 

We need to know the coefficient of the linear model: 

yk = Citk + C0 + ek (7) 

The most probable coefficient values, in the sense of the least squares, are given by: 

*      2(2iV-l)^ -6        ^ 
Co " N(N+1) *j w + N(N+l)rQ \ tl-Vi (8) 

dl = N(N+l)r0^
yi + N(N~l)(N + l)T0^

U-yi (9) 
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2.2    Estimation of the Uncertainties 

From (8) and (9), it is possible to calculate cr2(C0) and c2(Ci) 

4(2iV - l)2   , /«-,    \ 36 
°2(Co) = N\N~+ l)2o* (x» + ^(iV+1)2roy (£*.-•*•) 

(10) 

a2(d)   = 
36 (I» + 144 

N
2
{N-1)

2
(N+1)

2
TQ* N

2
{N + X)

2
T0

2 (5>w) 

with 

»    i 

«    i 

Cov (J2yt,E*j-w) =roEE*-<W-W> 
i      i 

where ( ) denotes an average over an infinite number of identical processes (ensemble average) 

2.3    Correlation of the Samples 

(11) 

(12) 

(13) 

(14) 

SM) 
h-2.f~2 

h-i.f-1 

h0.f° 

h+i.f
+1 

h+2J
+2 

Rij (with i ^ j) 

h-i 
1 .2: 

-h-x [C + ln(2rr/j) + ln\tj - ft-|] 
0 

(-1)^-1 
n+i- 

H2' 
fhCQs[2irfh{tj-tj)] 

Ri 
n~2 

T 
•h^ ln(2r0/0 

hofh 

h    fh" 

H2" 
fh* 

2n2(t3 - U)2 

Table 1: Correlations of the yk samples versus the noise levels ha. C is the Euler constant: C 
_i 
2T0 ' 0,5772. Assuming a sampling satisfying the Shannon rule, the high cut-off frequency is fh = £-. 

fi is the low cut-off frequency. 

The PSD Sy(f) is the Fourier Transform of the autocorrelation function. Thus; if no real drift exists 
in the sequence, we have: 
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-oo 
r+oo 

=    /      Sy{f) COS[2TTf{tj-t{)]df = Rij 
Jo 

which leads to the results given in Table 1. 

(15) 

2.4    Mean Value Subtraction 

Table 1 shows that, for low frequency noises (/~2 and f~l FM), the correlations of the samples 
depend on the low cut-off frequency //. This cut-off frequency must be introduced in order to ensure 
the power convergence. 
If the inverse of the low cut-off frequency is much larger than the duration of the sequence [t0, £#], 
the very long term fluctuations (period « 4-) are seen as a constant[l] (see Figure 1). 
On the other hand, the subtraction of the mean value of the sequence cancels the dependence on fi. 
Denoting the mean value of the sequence by y and the centered sequence samples by y'k: 

1 JV_1 

S=A?E» (i6) N 3=0 

y'k~yk~y (17) 

The subtraction of the mean value is equivalent to a correction of the nominal frequency by a factor 
(i + y): 

Vk^M\ + y)(l + y'k) 

After subtraction of the mean value, it follows that: 

N-l 

E ti-y'i = ro 
i=0 

N-l 

l^*-w ir~ E& 

Thus: 

*2(E^) = r° 
N{N + T) 

E E i-iRv - (N+1) E E *.*o- + "^r^ E E ^ 
•      j i      j i      3 

Considering the new linear frequency drift model: 

y'k = C[tk + C0 + e'k 

we have: 
36 

i{C>l) = NHN-lWN + lW*2 (E^-2/0 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

It may be demonstrated that C[ = Ci and then c2(C{) = <T
2
(CI). 
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2.5    Estimation of the Residuals 

The differences between the estimated drift and the y^ samples are: 

efc — yk — Citk - Co 

The variance of the residuals is given by: 

„.w = ^(y)+(^-i)^-i)Vji(Ci)+g2(Co) 

(25) 

-Cw (J2 yk, Co) - -Cov (J2 **-W. Ci) + (JV ~ l^oCov (C0I CX)        (26) 

The residuals don't depend on the subtraction of the mean value: 

ek = yk- Citk ~C0 = y'k- C[tk - C0 

3    RESULTS 

(27) 

Sy(f) <r(C0) <r(C!) *(G) »(«) 

h-2.f~2 

VT V    5 

2 

jZho 
y~27 

ll2ir2h-2 
V       5r 

3-A^T 
T 

j6ho 
Y7T 

V   15   h"a 

h-i.f-1 

h0.f 

>/[C + ln(irr)]fc_i 

/'l0        /7T~ 
\/2T0-v

fhho 

ft+1./+
l /5[1.37 + ln(2/hT)]h+1 

V                           7T2T2 
/9[l.27+ln(2/hT)]h+i 

V                          2TT2T2 
/l8[1.27 + ln(2/*T)]h+i 

V                  w2r4 ^ 

h+2.f+2 /l0/hln(2)/>+3 

V               *2T2 
/9Mn(2)fc+2 

V             5T2T2 
/36/hln(2)h+a 

V         *2r4 JZZ 
Table 2: Standard deviation of the drift coefficients and of the residuals versus the noise level ha 

and the duratic 
frequency is /;. 
and the duration of the sequence r.   The high cut-off frequency is fa = 37- and the low cut-off 

Thus, after measuring the ha noise levels, we may estimate the uncertainties a(C0) and er(Ci) by 
using Table 2. 

This table shows that the subtraction of the mean value cancels the dependence of Co on fa- For 
high frequency noises, <J(C0) remains very close to a(C0). Moreover, neither cr(Ci) nor a(e) are 
modified by this subtraction. 

3.1    Measurement Uncertainties of Drift Coefficients 

If no real deterministic drift exists, the determination of the drift coefficients yields: 

-2a(Co) < Co < 2a(C0)       with 95.5% confidence 

-2o-(Ci) < Ci < 2a(Ci)       with 95.5% confidence 
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Thus, measuring a drift coefficient C within the interval [-2CT(C),+2CT(C)] is compatible with a 
null drift hypothesis (with a risk of the second kind of 4.5%). 
On the other hand, if a real deterministic drift exists, the estimates C0 and Ci converge toward the 
real coefficients Co and C\\ 

(Co) = C0   and    (C1) = C1. 

The uncertainty domains of the coefficients Co and C\ are: 

Co = Co ± 2<r(C0)    with 95.5% confidence 

Ci = Ci ± 2<r(d)    with 95.5% confidence 

3.2    Frequency and Time Error Prediction 

3.2.1 Frequency error prediction 

If Co and Ci are estimated over a sequence of N samples (duration r = iW0), what error results 
from an extrapolation of the linear model to tjv + Tl 

y(tJV + T) = C1.(iiV + T) + Co (28) 

The Total Frequency Error (TFE) may be defined as: 

TFB(T) = y(tN + T)- y(tN + T) (29) 

The TFE is composed of a Deterministic Frequency Error (DFE): 

DFE{T) = (d - C1) (tN + T)~ (Co - Co) (30) 

plus a random error (see Figure 2): 

TFE(T) = DFE{T) + yr(tN + T) (31) 

yr(U) is a centered random variable without drift, with a variance c2(yr) = Ra. 
Thus, denoting t' = t^ + T, we obtain: 

(TFE2(T))   =   <r2(Co) + <r2(Ci).t'2 + o2(yr) 
-ICov (Co,yr(t')) - ICov {Cuyr{t')) £ + ICov (C0,d).? (32) 

Cov (Co, yr(t')) is the covariance between the parameter C0 estimated over the sequence [t0, t^] and 
the random sample yr at the date t' = t^ + T. 

3.2.2 Time error prediction 

If a sequence of x(tk) is known over a duration r (from t0 to tN = *o + T), the Time Interval Error 
(TIE) at tN + T may be defined as [2, 3]: 

TIE{T) = x(tN + T) - x(tN) - TltN<T (33) 
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with 

1    ftN+T 

VtN,T    =    fj ^'^ 
n   N+M-l 

- £ E * («) 
where j/j is the extrapolated frequency deviation at U and M is defined asT = MrQ. 

N+M-l 

TIE(T) = T0    J2    fa-Vi) (35) 
t=JV 

Thus, denoting M' = N + M - 1, we obtain: 

M'  M< 

(TIE2(T))   =   r0
2 £ E #,-; + to V(C0) + to2 (to + 2 )   <r2(Cl) 

+2tM
2(tN + ^jCov(C0,C1) 

M'   M' M'   M' 

-
2T

"O
2
 E E CWW. CO) - 2r0

2 E E ^(w. C0 (36) 
i=N j=N i=N j=N 

3.2.3    Example of f~2 frequency noise 

In order to use (32) the covariances Cov(Co,yr(t')) and Cov(Ci,yr(t')) must be calculated: 

JV-l c JV-l 2(2N - 1) 
{Co,yrM>) =  jv(iv +1) £^-^M')- ^(Ar+ ^ E »<y<-yr^ 

_    2(2JV-l)y _6_Vifl 
-    N(N+1) to ~ W+l) h      iM' 

=    h-2[j~n2(tN + T) 

For Cov(Ci,yr(£')), we obtain: 

) 

Therefore, for an /     frequency noise, the standard deviation of the TFE is: 

TFE*(T)) = Jh-2 
in*tN      12*>T 

+ —r.—(to + T) 

(37) 

Cov(Cl,yr(t')) = ^^- (38) 
To 

(39) 
15 5to 

It is interesting to notice that the DFE and the Random Frequency Error are fully separated: 

^/(TFE2(T)) = ^(e)+a2(C1)(tN + T) (40) 
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Thus, if T = 0 (interpolation), the standard deviation of the TFE is \/2 times the standard deviation 
of the residuals, i.e. it is the standard deviation between two residuals. 
Concerning the TIE, from (36), (37) and (38), we obtain: 

y/(TIE*(T)) = ^~^ (9t^2 + XZtNT + 4T2) (41) 

4    CONCLUSION: CHOICE OF THE FREQUENCY MODEL 

What is the physical meaning of the low cut-off frequency of an oscillator? Is it a real feature of 
low frequency noises or a mathematical trick? In practice, it is possible to avoid its use. 
For an f~2 frequency noise, the derivative of the frequency deviation, the ageing z(t), is a white 
noise: 

y(t) = f z(e)d6 (42) 
Jto 

where t0 is the switch-on date of the oscillator. In this case, we have assumed that the oscillator 
was syntonized and synchronized at t0. ft is no longer necessary, y(t) is a centered random variable 
whose standard deviation increases with 0: 

* s e" (43> 
What is the "real" frequency of the oscillator over T < Q:  its nominal frequency or its mean 
frequency over T? 
The answer depends on the frequency model: 

• the use of the power law PSD model implies that the nominal frequency and the ha noise 
levels are time-independent: they are the constants of this model. This model is suitable for 
free-running oscillators, e.g. frequency standards involved in the TAI computation; 

• the determination of the nominal frequency as the mean frequency over a sequence of finite 
duration implies that the nominal frequency is time-dependent: this nominal frequency is 
only valid over this whole sequence but neither over a part of this sequence nor over another 
sequence. This model is suitable for oscillators used for an experiment of well-defined duration. 
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Figure 1: Sequence of frequency deviation samples for an f~2 FM noise. Above, the duration of 
the sequence is about the inverse of the low cut-off frequency. Below is an enlargement of a part of 
this graph: the inverse of the low cut-off frequency is far larger than the duration of the sequence, 
and the samples are no longer centered 
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Figure 2: Estimation of the drift over a sequence of frequency deviation altered by f~2 FM noise 
(above). The drift was estimated over the first 256 samples (256 sec). After this time, the sequence 
moves away from the estimated drift. This effect is more obvious in the residuals (below). 
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